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ABSTRACT Conventional equations for enzyme kinetics are based on mass-action laws, that may fail in low-dimensional
and disordered media such as biological membranes. We present Monte Carlo simulations of an isolated Michaelis–Menten
enzyme reaction on two-dimensional lattices with varying obstacle densities, as models of biological membranes. The model
predicts that, as a result of anomalous diffusion on these low-dimensional media, the kinetics are of the fractal type.
Consequently, the conventional equations for enzyme kinetics fail to describe the reaction. In particular, we show that the
quasi-stationary-state assumption can hardly be retained in these conditions. Moreover, the fractal characteristics of the
kinetics are increasingly pronounced as obstacle density and initial substrate concentration increase. The simulations indicate
that these two influences are mainly additive. Finally, the simulations show pronounced S–P segregation over the lattice at
obstacle densities compatible with in vivo conditions. This phenomenon could be a source of spatial self organization in
biological membranes.

INTRODUCTION

The classic Michaelis–Menten formalism for enzyme reac-
tions (Michaelis and Menten, 1913; Segal, 1959) is based on
mass-action laws, that primarily originate from Smolu-
chowski’s approach of diffusion-limited reactions (Smolu-
chowski, 1917). Mass-action laws are mean-field approxi-
mations because they evaluate local reaction rates on the
basis of average values of the reactant density over a large
spatial domain. They rely on strict assumptions concerning,
for instance, the characteristics of the reaction medium,
which must be dilute, perfectly-mixed, three-dimensional,
and homogenous. Moreover, the distribution of the reaction
times must be exponential, i.e., of the Poisson type (Xie and
Lu, 1999). Many of these assumptions fail in the case of
biological reactions. Because of the complexity of biologi-
cal molecules or molecular assemblies, reaction-time distri-
butions may be broader than the Poisson one (Frauenfelder
et al., 1999). Cellular media are not homogeneous, but
highly compartmented. Moreover, they are not dilute solu-
tions, because local concentrations are high. For instance,
viscosity in the mitochondrion matrix is 25–37 times higher
than that of a classical experimental buffer (Scalettar et al.,
1991). High molecular crowding has important conse-
quences as far as thermodynamics are concerned (Minton,
1993, 1998), but strongly influences diffusion processes as
well. In the cytoplasm of fibroblasts, endogenous obstacles
hinder the diffusion of tracer objects to such a point that
objects with radius greater than 260 A˚ are immobilized
(Luby-Phelps et al., 1987). Biomacromolecule diffusion
coefficients in cytoplasm are usually 5–20 times lower than

their values in saline (for a review, see Verkman, 2002).
Thus biological media can be considered as disordered ones.
Accordingly, measurements of diffusion of molecules into
living cells have evidenced nonclassical behaviors
(Schwille et al., 1999; Wachsmuth et al., 2000).

Furthermore, many cellular reactions occur in two-di-
mensional (2D) membranes. This is an important aspect to
take into account, because diffusion is highly dependant on
the Euclidean dimensiond of the medium in which it
occurs. In dimensiond � 2, only a low fraction of the
accessible volume is explored by a diffusing molecule, so
that the molecule always escapes its initial position (non-
compact diffusion). Whereas, in dimensiond � 2, the
molecule mainly remains in the neighborhood of its initial
position (compact diffusion) (de Gennes, 1982). In other
words, diffusion is not a perfectly mixing process in low
dimension (d � 2) because the diffusing molecule will
eventually return to its initial position with probability 1,
whereas, ford � 2, there is a significant probability that the
diffusing molecule will never return to its origin (Montroll
and Weiss, 1965). This has important consequences on the
mean-squared displacement of the molecule, which scales
with time as�R2� � t�. Whereas the exponent� � 1 for
conventional diffusion,� � 1 in many low-dimensional
media. In this case, diffusion is called anomalous.

The case of diffusion on fractal media such as percolation
clusters is especially relevant to this issue because the
effective dimension of fractal objects is less than the Eu-
clidean dimension of the medium in which they are embed-
ded (de Gennes, 1983; Havlin and Ben-Avraham, 1987). In
contrast, percolation clusters are useful models of disor-
dered medium in which diffusion is hindered by immobile
obstacles (Saxton, 1994). Diffusion is anomalous both in
low-dimensional homogenous media and on percolation
clusters (Bouchaud and Georges, 1990). As a result of this
abnormality, diffusion-dependant processes are altered in
low dimensions. For example, diffusion-limited elementary
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chemical reactions of the type A � A3 A or A � B3 A

in low-dimensional media are not adequately described by
mass-action laws. The rate coefficient k relating the reaction
rate r to A and B concentrations or densities (r � k�A�B) is
no more constant, but decreases at long reaction times as a
power law of the reaction time: k � t�h (Kopelman, 1986).
This, in turn, yields anomalous values of the reaction order
X. For the homobimolecular diffusion-limited reaction,
mass-action laws predict a reaction order X � 2, whereas
the expected values are X � 2.5 for diffusion on 2D perco-
lation cluster and X � 3 for diffusion in a one-dimensional
homogenous medium (Kopelman, 1988). These nonconven-
tional kinetics have been referred to as “ fractal” kinetics.
They arise from a spatial self organization of the reactants
induced by the compact properties of diffusion (Argyrakis
and Kopelman, 1990). In the A � B 3 A case, the self
organization can even lead to spontaneous segregation of
the reactants into A-only and B-only regions, a phenomenon
called the Zeldovich effect (Ovchinnikov and Zeldovich,
1978; Toussaint and Wilczek, 1983).

Enzyme kinetics are poorly understood when the reaction
occurs in low-dimensional and disordered media such as
biological ones. However, in vivo measurements have fre-
quently evidenced deviations from traditional mass-action
laws in the form of anomalous reaction orders and power-
law reaction rates (Savageau, 1992, 1995). On a theoretical
point of view, the understanding of enzyme reactions is
hardly reducible to elementary bimolecular reactions. Basi-
cally, the conventional Michaelis–Menten scheme includes
three elementary reaction steps. The abundant literature on
elementary chemical reactions in low dimensions usually
deals with diffusion-limited reactions occurring on percola-
tion clusters at the threshold and initiated with equal reac-
tant densities. Equal enzyme and substrate concentrations
are poorly relevant to biological cases. Moreover, the per-
colation threshold is obtained at high obstructing obstacle
densities, whereas, for biological reactions, the entire range
of obstacle densities (from absence of obstacle to threshold
density) must be considered. This indicates that the issue of
enzyme kinetics in low-dimensional disordered media must
be specifically addressed.

The purpose of this paper is thus to study Michaelis–
Menten enzyme kinetics on low-dimensional lattices.
Monte Carlo (MC) simulations are especially adapted to this
kind of study because they allow the formulation of the
reaction scheme as simple evolution rules. Furthermore,
they provide representations of the spatial distribution of the
molecules during the reaction, allowing direct imaging of
the molecule repartition on the lattice. We thus use MC
simulations to model the evolution of an isolated enzymatic
system consisting of enzyme, substrate, product, and en-
zyme–substrate complex molecules diffusing on a 2D lattice
while reacting according to the Michaelis–Menten reaction
scheme. We also place immobile obstacles on the lattice to
account for the high molecular crowding of biological mem-

branes that hinders diffusion. The reaction medium can thus
be continuously varied from homogeneous and 2D without
obstacle to a fractal percolation cluster when obstacle den-
sity reaches the percolation threshold (Saxton, 1994).

METHODS

Monte Carlo simulations and model description

The Michaelis–Menten scheme of enzyme kinetics is a paradigmatic model
in biochemistry. It consists in a set of three elementary chemical reactions

E � SL|;
k1

k�1

C ¡
k2

E � P, (1)

where E, S, P, and C represent enzyme, substrate, product and enzyme–
substrate complex, respectively, and ki is the rate coefficient associated
with the elementary step i. According to the classical mass-action laws
(mean-field kinetics), the ki are constant throughout the reaction (Smolu-
chowski, 1917). The classic derivation of the equations describing reaction
scheme 1 assumes mean-field chemical kinetics for each elementary step.
This results in the set of ordinary differential equations,

d�C

dt
� �

d�E

dt
� k1�E�S � 	k�1 � k2
�C , (2)

d�S

dt
� �k1�E�S � k�1�C , (3)

d�P

dt
� k2�C , (4)

where �i is the overall density of species i, and t is time. This is the classic
textbook case. The set of Eqs. 2–4 is a singular perturbation problem: one
asymptotic solution can be found in the neighborhood of t � 0 (boundary
layer), and another for greater times, but there is no analytical solution
valid over the entire course of the reaction (Murray, 1993). Biochemists
usually use a quasi-stationary state assumption, which relies on the obser-
vation that, after an initial prestationary period, �C remains essentially
constant during the rest of the reaction, provided that the ratio between
initial E and S densities is low: �E(0)/�S(0) �� 1.

We simulated Reaction 1 using a MC algorithm on 2D square lattices
with cyclic boundary conditions. Each molecule type (E, S, C, and P) is
mobile on the lattice through diffusion, which is modeled by independent
(nearest-neighbor) random walk of the individual molecules. When
present, obstacles are represented as a fifth but immobile and nonreactive
molecule type. The coordinates of the position of every molecule and the
occupancy status of each lattice site are stored (Lin et al., 1996) and used
for analysis. At any moment of the simulation, one given lattice site cannot
be occupied by more than one molecule at a time (excluded volume
condition). The rate coefficients k1, k�1, and k2 are modeled by the reaction
probabilities f, r, and g, respectively (see below). At the beginning of each
simulation, the E and S molecules and the obstacles (if present) are placed
on the lattice by randomly choosing the coordinates for each of them. At
each MC sequence, an occupied lattice site is chosen at random (excluding
obstacle sites). The rules for movement and reaction of the associated
molecule depend on the nature of this molecule, in agreement with Reac-
tion 1:

1. If the molecule occupying this site is an S, a destination site is chosen
at random between its four nearest neighbors. If this destination site is
unoccupied, the molecule moves to it directly. If the destination site is
occupied by an E molecule, a random number is chosen between 0 and
1. If this number is lower than the reaction probability f, the destination
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site is turned to a C molecule and the initial S site becomes unoccupied.
In all other cases, the S molecule remains at its initial position. Note that
this is also valid if the chosen destination site is an obstacle (blind ant,
see, for example, Majid et al., 1984).

2. If the molecule occupying the chosen site is an E, the process is
symmetric to the former case, i.e., depends on the occupancy status of
the randomly-chosen destination site: movement if unoccupied, reaction
with a probability f if occupied by S, or immobility in all other cases.

3. If the molecule occupying the chosen site is a C, a random number is
chosen between 0 and 1. If this number is lower than the reaction
probability r, and provided that at least one of its nearest neighbors is
unoccupied, the C molecule dissociates into an E and an S. The new E
molecule is placed on the initial C site, whereas the new S molecule
randomly moves to one of the unoccupied sites. Note that this step is not
a blind ant process, contrary to the other steps. A more physically
realistic way would be to choose a site at random for the new S
molecule, move it to this site if unoccupied, and abort the decomposi-
tion process if occupied. However, we checked that this had no impor-
tant consequences in our simulations, at least for the E, S, and obstacle-
density ranges used. The initial C molecule dissociates into an E and a
P in a similar fashion, if the random number is greater than r but lower
than r � g. Finally, if the random number is greater than r � g, the C
molecule is allowed to move to a randomly chosen unoccupied nearest-
neighbor site.

4. if the chosen molecule is a P, it moves to a randomly-chosen unoccu-
pied nearest-neighbor site.

After each sequence, time is incremented by 1/�, where � is the current
number of molecules on the lattice (excluding obstacles), and another
sequence begins. One time unit thus statistically represents the time nec-
essary for each molecule to move once. The simulation goes on until a
prescribed total time (600 time units in this study, unless specified). Lattice
size was 100 � 100. Initial densities were always zero for C and P, and
ranged from 0.002 to 0.02 for E, and from 0.01 to 0.2 for S. In this study,
the values of the reaction probabilities f, r, and g were set to 1, 0.02, and
0.04, respectively, unless specified. The results presented are averages of
100 or 200 runs. Uniformly distributed random numbers were generated
with the combined generator of L’Ecuyer and Cote (1991), as implemented
in the RANLIB package (B. W. Brown and J. Lovato. Department of
Biomathematics, The University of Texas, Houston). The algorithm was
programmed with SCILAB (http://www-rocq.inria.fr/scilab/) and run on a
beowulf cluster under Linux.

Data analysis

Throughout the simulation course, the overall density of each species
(calculated over the whole lattice) is recorded. We also record �(t), the total
number of enzyme–substrate collisions that have effectively given rise to
complex formation after time t. �(t) is related to k1 by

�	t
 � �
0

t

k1	t�
�E	t�
�S	t�
 dt�. (5)

On the basis of the sampled �(t) values, the time derivative d�(t)/dt is
estimated numerically after interpolation by third-order spline functions.
Using enzyme and substrate densities at time t, k1 can then be estimated
from Eq. 5 by

k1	t
 �
d�	t
/dt

�E�S
. (6)

The observed time-dependence of k1 is accounted for in Eqs. 2–4, and the
set of ordinary differential equations is integrated numerically in SCILAB

with a solver suitable for stiff problems (Gear method, Isode solver of the
ODEPACK package).

Reactant self-segregation is evaluated with a quantitative criteria QSP

inspired by New house and Kopelman (1988), which is based on a quotient
of effective pair-correlation functions

QSP �
NSS � NPP

NSP
��S

2 � �P
2

2�S�P
��1

, (7)

where NSS is the number of S–S pairs, NPP is the number of P–P pairs, and
NSP is the number of S–P pairs. A pair is defined here by two nearest-
neighbor sites. NSP for instance, is thus the number of site pairs of which
one site is occupied by S and the other by P. A random distribution of the
molecules over the lattice yields QSP � 1, whereas under S–P segregation,
most of the S–P pairs are located on the interfaces between S-rich and
P-rich domains, so that QSP � 1.

RESULTS

Anomalous diffusion

In lattices with immobile obstacle densities below the per-
colation threshold, the accessible sites (i.e., those that are
not obstructed by an obstacle) form a percolation cluster
(Saxton, 1994). Percolation clusters are fractal over dis-
tances shorter than the correlation length � and homogenous
for larger ones. Diffusion on percolation clusters is thus
expected to show a crossing-over from an anomalous re-
gime (short times) to a normal one (longer times) as the
distance explored by the diffusing molecule becomes
greater than the correlation length. We first simulated the
diffusion of a single S molecule on a 2D lattice with varying
obstacle densities 	. Figure 1 shows the mean-squared dis-
placement �R2� as a function of time. The observed power-
law time dependence can be expressed by �R2� � t�, where
the anomalous diffusion exponent � is the slope of curves in
log–log coordinates. Note that, in the physics literature, the
dw notation, where � � 2/dw, is often used. Without obsta-
cle, diffusion is normal over the entire time scale, i.e. � �
1 for 	 � 0. With increasing obstacle densities, diffusion
becomes increasingly anomalous (i.e., � decreases with
increasing obstacle densities). We note that, with nonzero
obstacle densities, diffusion remains anomalous over the
entire time scale (103 time units � 103 random-walk steps).
Taken together, these results are in agreement with previ-
ously published simulations (Saxton, 1994).

Fractal kinetics

To probe the influence of anomalous diffusion on Michae-
lis–Menten enzyme kinetics, we carried out MC simulations
on 2D lattices (see Methods). Figure 2 shows the evaluation
of the rate coefficients k�1 and k2 (cf. Reaction 1) during the
simulations, for different 	/	c values. k�1 and k2 are eval-
uated from Eqs. 2–4 and 6 by

k�1	t
 �
d�	t
/dt � d�S	t
/dt

�C	t

(8)
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and

k2	t
 �
d�P	t
/dt

�C	t

, (9)

where time derivatives are evaluated numerically as de-
scribed for d�(t)/dt in Methods. As seen in Fig. 2 B, these
coefficients remain unchanged throughout the simulation
and do not depend on obstacle density, in agreement with
classic chemical kinetics. Furthermore, because these con-
stants are first-order, they are expected to correspond ex-
actly to the reaction probabilities r and g of the simulations
(see Methods). Accordingly, in Fig. 2 B, one obtains on
average k�1 � r � 0.02 and k2 � g � 0.04. The situation
is different with the rate coefficient k1 because k1 is a
second-order rate coefficient, and thus accounts for diffu-
sion effects: to form an enzyme–substrate complex, one
enzyme molecule and one substrate molecule must first
collide in the course of their respective random walks.
Figure 2 A shows the value of k1 for different 	/	c values.
Unlike k�1 or k2 and unlike the prediction of classic
Michaelis–Menten kinetics, k1 is not constant throughout
the reaction course. It crosses over from a constant regime
at short times to a power law decrease at longer ones. This
behavior is the hallmark of fractal kinetics:

k1	t
 � k1
0t�h, t3 
. (10)

The exponent h, the slope of the curves at long times in Fig.
2 A is the fractal kinetics exponent (Kopelman, 1988). Its
value is zero for classic kinetics (short times in Fig. 2 A) and
�0 in the anomalous regime (long times in Fig. 2 A). Note
that one time unit in these simulations statistically corre-
sponds to the time necessary for each molecule to move
once. This is the same time scale as in Fig. 1. Diffusion is
thus anomalous throughout the enzyme kinetics.

Because of the anomalous behavior of the complex for-
mation step, the entire reaction kinetics are anomalous as
well. Figure 3 shows the evolution of the overall enzyme
and complex densities during 2D simulations (curve MC)
for two obstacle densities (	/	c � 0.908 in Fig. 3, A and B,
and 0.368 in Fig. 3, C and D). For comparison, the dotted
lines indicate the results of numerical integration of the
classical Michaelis–Menten equations, Eqs. 2–4 (curve
CK). Except for the very short time regime, the results of the
simulations (MC) are clearly not adequately described by
the classic formalism (CK), whether for C (Fig. 3, A and C)
or S densities (Fig. 3, B and D). This behavior is in agree-

FIGURE 1 Diffusion of a single molecule on 2D lattices. A single
molecule is deposited in the lattice at a randomly chosen site at t � 0,
and the simulation proceeds as described in Methods. The mean squared
displacement �R2� of the molecule is plotted as a function of time, in
log–log coordinates. The slope of the curves is �, the anomalous
diffusion exponent. Obstacle densities 	 are (from top to bottom) 0,
0.10, 0.15, 0.25, 0.35, and 0.40. Indicated are the values of 	/	c for the
two extreme densities, where 	c is the obstacle density at the percola-
tion threshold (	c � 0.4073 for such site-percolation problems, Sahimi
(1994)). For comparison, the dotted line indicates a slope of 1. One time
unit corresponds to one move of the random walker between two
nearest-neighbor sites.

FIGURE 2 Rate coefficient time dependence with varying obstacle
densities on 2D lattices. (A) k1 (t) and (B) k�1 (t) and k2(t) are evaluated
as described by Eqs. 6, 8, and 9, respectively. Initial enzyme and
substrate densities are �E(0) � 0.01 and �S(0) � 0.10. The relative
obstacle densities 	/	c are 0 (curve 1), 0.491 (curve 2), 0.737 (curve 3),
0.859 (curve 4), and 0.999 (curve 5). In (A) the slope of each curve in
the long-time regime is the value of the fractal kinetics exponent h that
describes k1 anomalous time dependence. In (B), the curves for different
obstacle densities are all identical to within statistical scatter, whether for
k�1(t) or k2(t).
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ment with k1 evolution, which is almost normal in the short
time regime, and anomalous for longer times (Fig. 2 A). E and
P densities can be obtained from Fig. 3 using mass-conserva-
tion principles, i.e., �E(t) � �E(0) � �C(t), and �P(t) � �S(0) �
�C(t) � �S(t). For this reason, the time evolution of these
densities is not presented in Fig. 3. However, it can be deduced
from these conservation laws that, like �S and �C, �E and �P

kinetics do not comply with classical Michaelis–Menten equa-
tions. As mentioned above, the abnormality of diffusion and k1

time dependence increases with increasing obstacle densities.
In agreement with this behavior, the abnormality of the kinetics
increases with obstacle densities (compare Fig. 3, A and B with
Fig. 3, C and D). Consequently, the discrepancy between
simulation results (MC curves) and the kinetics predicted by
the classic equations (CK curves) is higher with high obstacle
densities.

An important consequence of these fractal kinetics con-
cerns the so-called quasi-stationary-state hypothesis. This
hypothesis states that the enzyme–substrate complex den-
sity is quasi-constant during the reaction and provides the

biochemist with a useful simplification by canceling d�S/dt
in Eq. 3. This, in turn, allows the reduction of Eqs. 2–4 to
a single differential equation for the initial velocity of S
consumption or P production. It can be shown that this
hypothesis is increasingly valid when the initial substrate-
to-enzyme density ratio �S(0)/�E(0) is increasingly high
(Murray, 1993). For calculation time reasons, such high
�S(0)/�E(0) values are difficult to study in MC simulations.
In Fig. 3 A, the initial ratio �S(0)/�E(0) (� 20) is not
sufficient to obtain a real quasi-stationary state for �C, even
in the classic case (curve CK). However, it is obvious from
this figure that 2D kinetics (MC results) are even more
different from steady-state than those predicted by the clas-
sic equations. This indicates that the validity of the quasi-
stationary state hypothesis in 2D enzyme kinetics is largely
questionable, because the �S(0)/�E(0) values required are
much higher than those predicted by classic Michaelis–
Menten kinetics.

The classic Michaelis–Menten equations (Eqs. 2–4) can
be modified to account for k1 time dependence during

FIGURE 3 Kinetics of (A and C) enzyme–substrate complex and (B and D) substrate densities during Monte Carlo simulation of a Michaelis–Menten
enzyme reaction on a 2D lattice, with 	 � 0.37 (A and B) or 	 � 0.157 (C and D). The curves labeled MC are the direct results of Monte Carlo simulations.
The curves labeled CK (Classic Kinetics) are the results of numerical integration of the classic equations for enzyme reaction (Eqs. 2–4). The curves labeled
FK (Fractal Kinetics) are the results of numerical integration of Eqs. 11–13 with k0

1 � 1.035, h � 0.549 (A and B) or k0
1 � 1.191, h � 0.347 (C and D).

In each panel, initial densities are �E(0) � 0.01 and �S(0) � 0.20. k0
1 and h were determined from log–log plots of k1 time dependence, such as those

presented in Fig. 2 A. The other parameters were set to k�1 � r � 0.02 and k2 � g � 0.04, in agreement with Fig. 2 B.
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fractal kinetics (Eq. 10). This yields the following equation
set for long reaction times:

d�C

dt
� �

d�E

dt
� k1

0t�h�E�S � 	k�1 � k2
�C , (11)

d�S

dt
� �k1

0t�h�E�S � k�1�C , (12)

d�P

dt
� k2�C . (13)

The classic Michaelis–Menten formalism is thus a special
case of Eqs. 11–13, that corresponds to h � 0. To validate
the capacity of these equations to describe 2D kinetics, we
integrated them numerically in the anomalous time regime.
For each simulation condition, h and k1

0 were determined by
nonlinear least-square fit to the values of k1 in the long-time
domain (Fig. 2 A), according to Eq. 10. The results are
presented in Fig. 3 (FK curves). In each case, the densities

predicted by Eqs. 11–13 are exactly superimposed to the
simulation results as far as �S is concerned (Fig. 3, B and
D). Predicted �C kinetics are also in very good agreement
with the simulation results (Fig. 3, A and C).

Reactant segregation

We were then interested in the spatial distribution of the E,
S, C, and P molecules during 2D enzyme kinetics. In our
simulations, the E, S, and obstacle distributions at t � 0 are
spatially homogeneous over the lattice. Figure 4 shows the
molecule distribution at longer times for increasing obstacle
densities. The reaction time in each panel of Fig. 4 corre-
sponds approximately to the mid-reaction point in each
simulation. From visual inspection of this figure, S–P seg-
regation is not obvious in the unobstructed case (Fig. 4 A).
The evolution of the quantitative segregation criteria QSP

during the reaction confirms this observation (Fig. 5). Al-
though a random distribution yields QSP � 1, one expects

FIGURE 4 Spatial distribution of the E (�), S (F), C (�) and P (E) molecules on the 2D lattice for single-simulation realizations with homogeneous
initial distributions. Simulation parameters are 	 � 0.000 (A), 0.150 (B), 0.250 (C), or 0.406 (D) and �E(0) � 0.01, �S(0) � 0.20 in each case. Snapshots
were realized at t � 300 (A, B and C) or 600 (D) to obtain �P and �S values corresponding approximately to the mid-reaction point. Note that the symbols
are not to scale, so that apparent densities are greater than actual ones. N.B.: For clarity, immobile obstacles are not represented in these figures.
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QSP � 1 under S–P segregation. With low obstacle densi-
ties, QSP rapidly tends to a steady value. This value is
slightly greater than 1 without obstacles (QSP � 1.18 � 0.02
for 	/	c � 0). This slight deviation from 1 indicates that S–P
segregation is weak in the unobstructed case. With increas-
ing obstacle densities, S and P molecule segregation into
S-rich and P-rich regions is clearly visible from Fig. 4, C
and D. In these cases, QSP accordingly increases and is
greater than 1 throughout the reaction (Fig. 5). The maximal
values reached at t � 600 are �2.3 and 2.8 for 	/	c � 0.908
and 0.998, respectively. These values confirm the possibil-
ity of occurrence of a Zeldovich segregated regime in 2D
enzyme kinetics. Note however, that segregation is here less
dramatic than in the case of the A � B 3 A reaction with
equal initial densities, where QSP � 10 in the Zeldovich
regime (Newhouse and Kopelman, 1988).

h Variations with obstacle and
substrate densities

As already mentioned, the fractal kinetics exponent h in-
creases with increasing obstacle densities. However, h ap-
pears to be dependent on the initial substrate density as well.
Figure 6 presents h dependence on obstacle density for
different initial substrate densities. Whatever the initial �S

value, h increases with obstacle density up to a maximal
value at the percolation threshold. The value at the threshold
(h(	 � 	c) � 0.632 � 0.024 in Fig. 6) does not depend on
the initial substrate density. In contrast, for obstacle densi-
ties below the threshold, h increases with �S(0). As seen in
this figure, the kinetics are anomalous even without immo-
bile obstacles, i.e., on homogeneous 2D lattices, although
diffusion is normal in this case. We further studied the
variations of h on homogeneous lattices (h(	 � 0)), with
two enzyme initial densities (Fig. 7). The data with both

enzyme densities (�E(0) � 0.01 or 0.005) collapse on a
single line in log–log coordinates, yielding a power-law
behavior for h(	 � 0)

h		 � 0
 � �	�S	0


. (14)

From Fig. 7, the prefactor � and the exponent 
 were
evaluated to 0.6 and 0.43, respectively. Note that the en-
zyme densities are equally low as compared to most of the
initial substrate densities in Fig. 7, so that a weak depen-
dance of h(	 � 0) on �E(0) is not excluded. We tried to
obtain the influence of the obstacle density only on the
anomalous kinetics by subtracting the corresponding h(	 �
0) value form the h(	) values presented in Fig. 6. When
plotted as h(	) � h(	 � 0) as a function of 	, the data of Fig.
6 mostly collapse on a single curve (Fig. 8). These results
thus indicate that the respective influence of immobile ob-

FIGURE 5 Quantification of S–P molecules segregation during enzyme
reaction on a 2D lattice with obstacles. Indicated above each curve is the
corresponding relative obstacle density. QSP is calculated as described in
Methods (Eq. 7). �E(0) � 0.01, �S(0) � 0.20 in each case.

FIGURE 6 Fractal kinetics exponent h as a function of obstacle and
initial substrate densities. h values were determined from log–log plots of
k1 time-dependence, such as in Fig. 2 A. Initial substrate densities are:
�S(0) � 0.20 (F), 0.1 (E), 0.05 (■ ) and 0.01 (�). In each case, �E(0) �
0.01.

FIGURE 7 Fractal kinetics exponent h(	 � 0) for Michaelis–Menten
kinetics on 2D lattice in the absence of immobile obstacles as a function of
initial substrate density. Initial enzyme densities are �E(0) � 0.02 (�), 0.01
(E), 0.005 (�) or 0.002 (�). The full line is a nonlinear least-square fit on
the four data series, yielding h(	 � 0) � 0.60(�S(0))0.43.
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stacle density and substrate densities on Michaelis–Menten
fractal kinetics in two dimensions are mainly additives, i.e.,

h		, �S
 � h1		
 � �	�S	0


. (15)

As can be seen from Fig. 8, this approximation partly fails
when obstacle density approaches the percolation threshold.
This could be due to the poor precision in the values of �
and 
 estimated from Fig. 7. Alternatively, Eq. 15 may need
corrections close to the threshold.

The influence of the initial substrate density could be due
to the excluded volume condition included in our simula-
tions. Actually, because of this condition, each molecule on
the lattice can be considered as a mobile obstacle with
respect to another molecule. The importance of the excluded
volume increases with �E(0) � �S(0), which could partly
account for the observed h(	 � 0) variations. We carried out
a modified version of the MC algorithm, in which all lattice
sites (except obstacle ones) can be occupied by several
molecules at a time. The simulations show that the h values
with or without excluded volume condition are largely
comparable (not shown). Thus the excluded-volume condi-
tion is not likely the main cause of the substrate density
influence on our kinetics.

Finally, the results presented above assume that C for-
mation from E � S is diffusion limited, as reaction proba-
bility f � 1. We studied the influence of partial limitation by
the reaction (i.e., f � 1) of this part of the overall Michaelis–
Menten scheme. Figure 9 shows k1 for varying f values,
with obstacle density 	 � 0.20, �E(0) � 0.01, and �S(0) �
0.10. The crossover time to the anomalous regime increases
as f decreases. More importantly, h, the slope of the curves
in the anomalous regime decreases at lower f values (its
value at f � 0.30 is �55% of its value at f � 1.00). This
indicates that the abnormality of the kinetics decreases as
the E � S 3 C step becomes less diffusion controlled.

DISCUSSION

Mass-action laws and enzyme reactions in
low dimensions

Dimensionality plays a crucial role in many diffusion-de-
pendant mechanisms in biology. Target-search processes
such as specific DNA sequence search by transcription
factors in cell nucleus, or receptor search by pheromones on
insect’ s antenna, are dramatically accelerated when diffu-
sion is at least partly two-dimensional (Adam and Delbrück,
1968; Holyst et al., 2000). Furthermore, conventional mean-
field equations or mass-action laws are continuum approx-
imations that can fail to describe diffusion-reaction pro-
cesses in low dimensions, because they do not take spatial
fluctuations into account. In contrast, spatial density fluc-
tuations are inherent to discrete lattice simulations. Several
recent studies have evidenced significant discrepancies be-
tween the predictions given by these two approaches. Strik-
ingly, discrete approaches in low dimension frequently pre-
dict self organizations that are not predicted by the
corresponding mean-field equations. Two-dimensional sim-
ulations of simple population-growth models show species
survival on localized lattice regions where mean-field equa-
tions predict extinction of the entire population (Shnerb et
al., 2000; Young et al., 2001). Discrepancies are also ob-
served in more elaborate prey–predator models (Lipowski
and Lipowska, 2000). For instance, in the case of the classic
Lotka–Volterra prey–predator model, the elliptic fixed-
point predicted by the mean-field equations is changed to a
limit cycle in 2D simulations (Bettelheim et al., 2001).

The issue of enzyme reaction in low-dimensional media
has rarely been addressed. Savageau (1995) examined the
possible implications of anomalous reaction orders on en-
zyme kinetics under the quasi-stationary-state assumption.
Zhdanov (2000) used MC simulations on 2D lattices to

FIGURE 8 Plot of h(	) � h(	 � 0) for Michaelis–Menten kinetics on 2D
lattices as a function of the relative obstacle density. Data are replotted
from Fig. 6 after h(	 � 0) subtraction from the overall h(	) values
presented in Fig. 6. h(	 � 0) is calculated for each initial enzyme density
from Eq. 14. The symbols and initial enzyme and substrate densities are as
in Fig. 6

FIGURE 9 Evolution of k1(t)/k1(0) as a function of time for three values
of the E � S3 C reaction probability f. The value of f for each simulation
condition is indicated on the figure. Reaction probabilities r and g are
0.02 and 0.04, respectively. Initial densities are �S(0) � 	 � 0.20, and
�E(0) � 0.01
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study an enzyme reaction with k�1 � 0, immobile enzyme
molecules, and instantaneous complex decomposition. The
reaction scheme is then E � S 3 E � P with immobile
enzyme and unequal initial densities and is kinetically anal-
ogous to a trapping reaction with the enzyme as the trap.
This study shows that, in the case of attractive interactions
between the product molecules, phase separation between S
and P molecules occurs provided that the rate constant is
fast. Lin et al. (1997) studied experimentally the glucose
oxidase enzyme reaction with immobilized enzyme and
mobile substrate. Again, this reduces to a trapping reaction.
They indeed show that, in a capillary (pseudo-1D medium),
the reaction is fractal and in good agreement with the
behavior predicted for d � 1.

In this paper, we studied the native Michaelis–Menten
reaction scheme using MC simulations on 2D lattices with
immobile obstacle densities varying from zero to the per-
colation threshold. We show that, as a result of the anom-
alous diffusion on these low-dimensional media, the con-
ventional mean-field description fails because the reaction
kinetics are of the fractal type (Kopelman, 1988). Of im-
portance, we show that the conditions necessary to fulfill the
quasi-stationary-state assumption are much more drastic
than in the conventional case, so that this assumption is
highly questionable. The differential equation set describing
the kinetics can thus hardly be reduced to a single equation
for the initial reaction velocity. This could be a significant
indication for experimental enzymology, where the deter-
mination of the kinetic parameters is usually based on the
quasi-stationary-state assumption derived rate law. In the
absence of quasi-steady state, the kinetic parameters can
still be obtained by a fit to the results of the numerical
integration of the differential equation set (Eqs. 11–13).
Furthermore, we show that the fractal characteristics of the
kinetics increase with obstacle density and initial substrate
concentration, the two contributions being mainly additive.
Finally, as in diffusion-limited elementary chemical reac-
tions, fractal kinetics seem to originate from reactant self
organization that leads at relatively high obstacle densities
to S–P segregation over the lattice.

Comparison with diffusion-limited
heterobimolecular reactions

The diffusion-limited A � B3 A reaction has been widely
studied both by simulation and theory, whether on homo-
geneous 2D lattices (Kang and Redner, 1984, 1985; Lin-
denberg et al., 1988; Ovchinnikov and Zeldovich, 1978;
Toussaint and Wilczek, 1983) or on percolation clusters at
the threshold (Anacker and Kopelman, 1987; Argyrakis and
Kopelman, 1992; Kopelman, 1986; Newhouse and Kopel-
man, 1988). For simplicity reasons, these studies usually
use equal initial A and B densities. In the case of diffusion
on a fractal support, the reaction constant k behaves as k �
t�h, with h � 1 � ds/2 before the onset of the Zeldovich

regime, and h � 1 � ds/4 afterward (Argyrakis et al., 1993;
Lin et al., 1996). ds is called the spectral dimension and
equals � � df where df is the fractal dimension of the
support, and � is the anomalous exponent for the diffusion
on the fractal. The theoretically expected h value for the
diffusion-limited A � B3 A reaction on a 2D percolation
cluster at the threshold is h � 2⁄3 in the segregated regime
(Havlin and Ben-Avraham, 1987). In our simulations with
equal initial densities, h � 0.6662 at the threshold (Fig. 6),
in very good agreement with the predicted value.

To compare with our results for obstacle densities below
the threshold, a major problem consists in the value of the
spectral dimension as a function of obstacle density. Argy-
rakis and Kopelman (1984) have measured an effective
spectral dimension d�s from the average number of distinct
sites visited, during random walks on lattices with obstacle
densities varying from zero to the threshold. A nonlinear
least-square fit of their data for d�s (see Fig. 6 in their paper)
yields d�s � (�7.57x2 � 6.91x � 1.80)/(�3.89x2 � 3.81x �
1), where x � 	/	c. This approximation allows correlation
of the h values with d�s for different obstacle densities. As
seen in Figs. 4 and 5, S–P segregation is weak in the
unobstructed case. We thus expect h to vary from 1 � d�s/2
at low obstacle densities to 1 � d�s/4 close to the threshold.
Figure 10 shows a test of these two expressions, on the basis
of the h values determined in Fig. 6 and the calculated
values for d�s. The h values observed in our simulations
indeed vary between h � 1 � d�s/2 at zero obstacle densities
to h � 1 � d�s/4 close to the threshold.

In contrast, the Michaelis–Menten reaction scheme is not
an elementary hetero-bimolecular reaction, because the two
monomolecular C decomposition reactions complicate the
kinetics. These steps mainly introduce an effective mixing
because E (and S) molecules are regenerated after a E � S

FIGURE 10 Plots of h(	, �S(0)) � d�S/2 (F) and h(	, �S(0)) � d�S/4 (E)
as a function of the relative obstacle density. Initial substrate and enzyme
densities are equal: �E(0) � �S(0) � 0.01. The d�S values were deduced
from Fig. 6 of Argyrakis and Kopelman (1984) (see text). The doted line
indicates the value 1.
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3 C reaction, possibly at a certain distance of the initial
E–S meeting. In A � B3 A reactions, reactant segregation
occurs because, on account of its compact property, the
random walk in low dimension is not “mixing” enough to
dissipate the formation of the A and B regions. Introducing
exogenous mixing thus tends to prevent the occurrence of
the Zeldovich regime. This is, for example, the case when
the random walk is replaced by Lévy flights (Zumofen et
al., 1996) or when A and B molecules are exogenously
added to the lattice during the reaction (stationary-state
conditions, Anacker and Kopelman, 1987; Argyrakis and
Kopelman, 1992; Lin et al., 1996). In the latter case, seg-
regation occurs for Euclidean dimension d � 2 (for homo-
geneous lattices), whereas it can be observed for d � 4 in
“batch” conditions. In dimension d � 2, segregation is
marginal under stationary-state conditions (Lindenberg et
al., 1988). Thus, the mixing effect of the two monomolec-
ular C decomposition reactions in Michaelis–Menten kinet-
ics could explain the weak segregation on 2D lattices with-
out obstacle. Alternatively, the crossover time between
nonsegregated and segregated regimes could be greater than
the time necessary to complete the reaction.

The decrease of k1 with time in the unobstructed case can
be explained by two alternative mechanisms. A first possi-
bility is that reactant segregation in the unobstructed case is
low, but not zero. In the A � B3 A diffusion-limited case
under steady-state conditions, segregation in two dimen-
sions depends sensitively on the detailed parameter values
(Lindenberg et al., 1988). Accordingly, in a model for
protein G activation by mobile membrane receptors, Shea et
al. (1997) evidenced inhomogeneous reactant distribution at
steady state, together with reduced rate constants as com-
pared to the homogeneous case. In this case, one would thus
expect a fractal power-law behavior for k1, as assumed in
Eq. 14. In contrast, the rate coefficient for a diffusion-
limited A � B3 A reaction in 2D unobstructed systems is
known to scale asymptotically as 1/ln t (Torney and McCon-
nell, 1983). In our simulations, the time dependence of k1 at
	 � 0 can as well be fitted to a 1/ln t law (not shown).
Because of the statistical error, we could not discriminate
between these two behaviors for k1 in the unobstructed case.
Eq. 14 is thus to be considered as an empirical law, and has
the advantage of preserving the same functional form for
zero and nonzero obstacle densities.

Fractal enzyme kinetics and spatial
self-organization in vivo

The appearance of stable forms or patterns from previously
homogeneous spatial conditions is a central issue in biol-
ogy. The physical mechanisms underlying these symmetry
breakings are still largely unknown. One possible mecha-
nism has been uncovered by Turing (1952). Within the
framework of this theory, spatial self organization results
from the growth of spatial fluctuations of concentration,

which can be observed in some reaction–diffusion systems
(Murray, 1993). Nevertheless, this approach necessitates
specific reaction or diffusion conditions and cannot account
for all spatial self-organization events in biology.

Our simulations evidence that spatial self organization in
membranes could occur through simple Michaelis–Menten
enzyme kinetics. However, the relevance of these simula-
tion results to real in vivo situations must be carefully
interpreted. First, we studied an isolated enzyme reaction,
independent of external enzyme regulations or molecule
influx or efflux through metabolic pathways that could as
well contribute to effective mixing. Second, each molecule
in our simulations moves with the same diffusion coeffi-
cient. This could be a crude approximation for some bio-
logical systems, where enzyme and substrate sizes are very
different. A direct evaluation of obstacle densities in bio-
logical membranes is a difficult problem because the mem-
brane area occupied by a transmembrane protein obstacle is
usually unknown, and because there exist several mecha-
nisms hindering diffusion (for a review, see Saxton, 1999).
Estimations for several biological membranes give lower
limits for obstacle-area fractions ranging from 0.2 to 0.4
(Saxton, 1989). Wachsmuth et al. (2000) measured the
diffusion of protein probes in nuclei by spatially resolved
fluorescence-correlation spectroscopy, and evidenced a
slightly anomalous diffusion, with � � 0.87. For 3D per-
colation clusters at the threshold, � � 0.541 (Havlin and
Ben-Avraham, 1987), so that obstacle density in the nuclei
would rather be far from the threshold. Alternatively,
Schwille et al. (1999) showed that diffusion in cell mem-
branes is anomalous, with � � 0.741, which is close to its
value at the percolation threshold in two dimensions (� �
0.697). Our simulations show visible reactant segregation
for obstacle densities as low as 0.25 (Fig. 4). Thus we think
that our simulation conditions are compatible with in vivo
conditions. Finally, the value of the fractal kinetics expo-
nent h seems to decrease when the C formation step is
decreasingly diffusion controlled, or increasingly reaction
controlled (Fig. 9). Thus the occurrence of fractal kinetics
and spatial segregation could be restricted to enzymes with
high catalytic efficiency, or at least high affinity for their
substrate. Simulations with lower f values than those pre-
sented in Fig. 9 demand extensive calculations because the
overall reaction is accordingly slowed down but could more
precisely state this issue by permitting a thorough study of
h dependance upon f values.

REFERENCES

Adam, G., and M. Delbrück. 1968. Reduction of dimensionality in biolog-
ical diffusion processes. In Structural Chemistry and Molecular Biology
A. Rich and N. Davidson, editors. W. H. Freeman & Co, San Francisco,
CA. 198–215.

Anacker, L. W., and R. Kopelman. 1987. Steady-state chemical kinetics on
fractals: segregation of reactants. Phys. Rev. Lett. 58:289–291.

1900 Berry

Biophysical Journal 83(4) 1891–1901



Argyrakis, P., and R. Kopelman. 1984. Fractal to euclidean crossover and
scaling for random walkers on percolation clusters. J. Chem. Phys.
81:1015–1018.

Argyrakis, P., and R. Kopelman. 1990. Nearest-neighbor distance distri-
bution and self-ordering in diffusion-controlled reactions. Phys. Rev. A.
41:2114–2126.

Argyrakis, P., and R. Kopelman. 1992. Diffusion-controlled binary reac-
tions in low dimensions: refined simulations. Phys. Rev. A. 45:
5814–5819.

Argyrakis, P., R. Kopelman, and K. Lindenberg. 1993. Diffusion-limited
binary reactions: the hierarchy of nonclassical regimes for random initial
conditions. Chem. Phys. 177:85032–85034.

Bettelheim, E., O. Agam, and N. M. Shnerb. 2001. “Quantum phase
transitions” in classical nonequilibrium processes. Physica E.
9:600–608.

Bouchaud, J.-P., and A. Georges. 1990 Anomalous diffusion in disordered
media: statistical mechanisms, models, and physical applications. Phys.
Rep. 195:127–193.

de Gennes, P. G. 1982. Kinetics of diffusion-controlled processes in dense
polymer systems. J. Chem. Phys. 76:3316–3321.

de Gennes, P. G. 1983. Capture d’une “ fourmi” par des pièges sur un amas
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